• 中文
  • About us
    About the Department
    Greetings from the Chair
    Administration
    How to find us
    90th Anniversary
  • Faculty
    Fulltime faculty
  • Research
    Research directions
    Research Highlights
    Laboratory for Climate and Ocean-Atmosphere Studies
    The joint research centre for atmospheric hydrological cycle and weather modification
    PKU AOS – Harvard EPS Climate and Environment Collaborative (CEC)
  • Education
  • Lectures
    Distinguished Lectures
  • Recruitment
  • About us
    About the Department
    Greetings from the Chair
    Administration
    How to find us
    90th Anniversary
  • Faculty
    Fulltime faculty
  • Research
    Research directions
    Research Highlights
    Laboratory for Climate and Ocean-Atmosphere Studies
    The joint research centre for atmospheric hydrological cycle and weather modification
    PKU AOS – Harvard EPS Climate and Environment Collaborative (CEC)
  • Education
  • Lectures
    Distinguished Lectures
  • Recruitment
中文

Lectures

  • Distinguished Lectures

Lectures

  • Distinguished Lectures
当前位置: 首页» Lectures

Lectures

Surface-Atmosphere Connections on Titan

发布时间:2018-09-17
 

  Speaker:Jonathan L.Mitchell

  Time:15:00-16:00, Tuesday,2018.9.18

  Address:Physics North 539

  Host:聂绩

  

 

  Summary:

Saturn's largest moon, Titan, has an active weather cycle that transports methane throughout the globe, much like water here on Earth.  Motivated by the extraordinary level of detail revealed during NASA's Cassini mission, our group has over the years developed a sequence of Titan climate simulations of increasing complexity.  This approach is true to our philosophy of adding model complexity only as the observations demand it. For instance, the putative methane wetlands of Titan’s high latitude caps (Neish & Lorenz 2014) led us to restrict surface methane evaporation to high latitudes and impose surface infiltration at low latitudes in Titan Atmosphere Model (TAM; Lora et al. 2015) simulations. This so-called “TAM wetlands” simulation provides simulation provides a good fit to the seasonal distribution of observed clouds (Mitchell & Lora 2016), and reveals an important role for baroclinic storms in maintaining the hemispheric asymmetry in Titan’s surface liquids (Lora & Mitchell 2015).  Our latest interests have centered on possible connections between the spatial distribution of observed geomorphological features and the distribution of intense rainfall in the TAM wetlands simulation.  Of particular interest is the latitudinal distribution of alluvial fans, since presumably such features indicate areas where intense periods of rainfall have occurred in Titan's otherwise arid climate. The TAM wetlands simulation do indeed show interesting latitudinal and seasonal trends, which compare favorably with the observed alluvial fan distribution (Faulk et al. 2017).  These model-observation comparisons motivate a model with even more realism that includes a treatment of surface hydrology, and I will outline how we are doing this.

  

 

 

  

Address: 209 Chengfu Road (5th floor), Beijing, 100871, China Tel: 010-62765802 Fax: 010-62751094 Map route

----Friendship link----
---- Ministry of Education of the People's Republic of China ---- ---- National Natural Science Foundation of China ---- ---- Ministry of Science and Technology of the People's Republic of China ---- ---- School of physics,Peking University ---- ---- PEKING UNIVERSITY ----

Copyright © 2017. Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University